2008-01-29

Samsung G808 相機專測:絕佳影像實力展現!

 
每週三出刊.2008.01.30
 
本 期 目 錄 簡介/舊報明細
Samsung G808 相機專測:絕佳影像實力展現!
【2 月新機速報】春節新貨 + 11 破解日機特搜
掌握每天最精彩的新聞,跟朋友聊天不怕找不到話題!
Hot News 

Samsung G808 相機專測:絕佳影像實力展現!

搭載頂級攝影機能的 Samsung G808 來了!這部使用 3 倍光學變焦鏡頭的 500 萬畫素旗艦,具備先進的臉部追蹤對焦、動態測光平衡和 13 種智慧場景,由內而外,G808 都有挑戰數位相機的實力,快來看它的驚人表現!



[編輯部╱企劃報導]

Samsung G808 攝影師的專業選擇
在所有標榜拍照功能的手機中,Samsung G808 無疑是最受矚目的一款。G808 具備500 萬畫素輸出實力、自動對焦鏡頭和氙氣閃光燈,更加入了許多只在相機出現的專業攝影功能,像是:3 倍光學變焦、臉部追蹤對焦、WDR 動態測光平衡、13 種智慧場景、影片編輯器、防手震等,早已超出我們對一般「照相手機」的認知,而是一部貨真價實、可以帶出門旅遊的專業級相機。



由內而外的攝影精神
Samsung G808 的理念很簡單,就是給消費者最專業的影像,這個精神也由內延伸至整個外型設計。從這面看,G808 就是一部不折不扣的數位相機,紮實的金屬背蓋,帶來高階產品應有的紮實質感,隱約中還有一點復古風味。這塊背蓋其實是滑動式的鏡頭蓋,保護鏡片之餘,更有推開即拍的自動啟動相機功能,由開蓋到可以照相的狀態約需 2 秒,效率很不錯,在一些需要講求時效和街頭搶拍場景,G808 的高效率就很值得信賴。


▲ 完全遵循相機精神的 G808,是市面上拍攝功能最齊全的頂級照相手機。


▲ 滑蓋具半自動設計,推蓋順暢,啟動相機的速度也很快。

操作感一流的專業相機
標示著紅點的快門和變焦控制鍵位在機身右側,這顆快門按鍵行程適中,有一定的緩衝深度,因此在執行半按對焦、重壓拍攝的二段式操作時,沒有其它照相手機按鍵太淺、快門敏感的問題,感覺非常明確好按;一旁的變焦控制鍵同樣有大小適中的優點,當手機橫持拍照,左手食指負責變焦,右手掌控快門和導航鍵,與使用數位相機一樣方便。


▲ 與相機一模一樣的按鍵配置。


▲ 好按的快門和變焦鍵為 G808 加了一些分數,有與相機等同的流暢操作感。


▲ 漂亮的鏡面導航鍵,在拍照和手機模式裡都扮演重要的操作角色。


▲ 另一側有吊飾孔、耳機 / 充電 / 傳輸埠和 microSD 插槽,最高支援 4 GB。

業界最先進影像機能
接著進入重頭戲:相機功能。前面提到 G808 搭載了頂尖的影像配備,有概念的讀者想必已經熱血沸騰,而照相新手也不用擔心,接下來的介紹會讓你更瞭解 G808 的性能。

3 倍光學變焦
首先是光學變焦,這個少在手機界出現的名詞。Samsung G808 做了一項創舉,就是率先加入 3 倍光學變焦鏡頭,成為市場上唯一具備 3 倍光學望遠能力的頂級照相手機。這意味著,以後我們不必再遷就數位變焦的糟糕畫質,就能突破現場環境限制,拍下更遠更清楚的照片,G808 也一舉打破手機界長久以來只用定焦鏡頭的悶局。


▲ G808 使用潛望式鏡頭,能有效縮減體積,將 3 倍望遠實力濃縮在機身裡;這裡還可看見高亮度氙氣閃光燈、對焦輔助燈二項實用配備。


▲ 左圖是廣角端,右圖是啟動 2 倍望遠,可以明顯看到主體變近,周遭的雜物也因為視野拉近而少了。要知道,光學變焦有時候也是構圖的好幫手呢。


▲ 3 倍望遠端。本來遙遠的小熊終於變大變清楚了,還能隱約看見它身上的英文,原來這是「Happy Dog」,不是熊。換做數位變焦,這裡看見的只是破碎的殘格吧!

>>>更多內容
 
 
【2 月新機速報】春節新貨 + 11 破解日機特搜

春節新機已知有:SE W890i、SE K530i 紅、LG KF600、Samsung F258、Nokia E65 白、HTC Shift 等十餘款,有點冷清。不過呢,今年各位有日本手機陪伴,一部部破解日機接連登台,今天特搜 11 款熱門日機,來挑部喜歡的吧!



[編輯部╱訊息彙整 文字╱胡皓勛 構圖╱朱法奇]

Part 1 春節檔預定新機

SE W890i
SE Walkman 最新高階機,W890i 升級 300 萬畫素、3.5G,螢幕也變大一點,來到 2 吋 240 x 320 解析度,畫面很細緻,可惜視野還是稍微窄了一些。W890i 改進的地方還包括:FM 收音機、SensMe、類 PSP 媒體選單,都不算是驚天動地的事情,但不可否認它的外型更精緻,按鍵看起來也更貼近使用需求,應該還會是春節檔期的焦點新機吧。



SE K550i RED
每逢過年每不了大魚大肉…不對不對,是要穿得紅艷光彩、沾沾喜氣。中階 3G 手機 SE K530i 推出紅色新款式,將原先比較暗沉的銅黑色換掉,機面、側身、按鍵統統變成大紅色,搭配黑色邊框螢幕,兩兩相襯十分耀眼。K530i「火熱紅」漆質感覺和當初 K610i 紅色款類似,都是帶有金屬光澤的大紅亮漆,精緻之餘,也和年節氣氛更對味,建議售價 8,800 元,已經陸續上市了。



LG KF600
LG 即將在二月底推出 2008 首部主力機種 LG KF600,將是台灣第一部具備雙螢幕操作的滑蓋手機。KF600 在上蓋配置了二塊螢幕,上大下小,主螢幕有 2 吋 QVGA 顯示力,下方的子螢幕則是支援觸控操作的互動式面板;播放 MP3 時顯示音樂功能鍵,拍照時在這裡切換相機功能,玩遊戲時則具備子母螢幕互動效果。KF600 還使用 300 萬 AF 相機,支援電子防手震,預計 2 月底推出,不過真正上市的時候可能會是 3 月囉。



Samsung F258
大家知道三星有部 S60 音樂手機 i458 要推出,不過那是三月的事情,先來報到的會是 F258。看型號就知道 F258 比較低階,GSM 三頻、滑蓋設計,特色是很亮的鏡面螢幕,並有 5 種鮮明的顏色可選。F258 訴求 MP3 機能,還是台灣三星首次搭載 3.5 mm 耳機孔的音樂專用機,搭配新版音樂播放器、藍牙 A2DP、2 GB microSD 擴充,平價機也能很有味道。預估售價 8 千元以下。



HTC Shift
很另類的機種:HTC Shift。它是一部 UMPC,預載 Windows Vista Business 作業系統,同時它也有一個簡化版的 Windows Mobile 系統,HTC 叫它做 SnapVUE;在 SnapVUE 下,可處理 PDA 功能,如收發 Push Email、SMS、輸入聯絡人資料、行事曆等。Shift 具備 7 吋可立式螢幕、QWERTY、3.5G、Wi-Fi 和 40 GB 硬碟,燦坤 3C 已推出第一波網路預購活動,只有 200 台再送限量贈品,售價 45,900 元。



CHT3000
中華電信自有品牌 CHT 低價第一砲。CHT3000 是中華電信拓展 3G 用戶的小尖兵,講白話一點就是它是 0 元手機,只要簽合約就可以免費帶回家。和同級生 Samsung J208、LG KU250 一樣,CHT3000 在各方面都有均衡表現,相機、MP3、插卡、藍牙樣樣俱全,還有薄薄的銀白機身,賣相還不算太差。CHT3000 已經在中華門市推出,配門號 (183 專案價除外) 不用錢。



Samsung F609
F609 很受期待,賣點很多,像是彩殼更換、插卡、藍牙、MP3 和 130 萬畫素相機等,在以入門款為主的亞太門市裡顯得格外突出。不過,F609 也還沒真正走入亞太門市,目前在跑的是預購活動,門號價 2,790 至 3,990 元不等,首批 5000 支還加贈日本籃球彩殼哦!趕緊去附近的門市問問狀況吧。



LG KX166
KG KX166 也是亞太 CDMA 專用手機,但它的定位就入門多了,30 萬畫素相機、1.5 吋螢幕、5 MB 記憶體、免持擴音,再普通不過。不過對於只有通話需求的亞太用戶,KX166 有內外雙螢幕、53 g 超級輕量化設計,電話簿也能自訂群組分類,管理也挺方便。KX166 預計農曆年前抵達亞太門市,也就是這一二週開賣的意思,門號價 990 元起,夠國民了吧。



NOKIA E65 + 2630 WHITE
剛剛已經預告過,各家在二月幾乎都處在休市狀態,諾基亞也是如此。未上市新機區已經空蕩蕩的 Nokia,將要推出的是三部新色手機:E65、2650、6500s,其中 E65 和 2650 推出白色,6500s 則是終於全面鋪貨黑色機,之前買不到的人,這次不會撲空了。Nokia 新機消息完整版請參考《Nokia 三款情人新機手機》新聞。



utec T392 + PHS PG1910
全虹自有品牌 utec 小兵立大功,每月持續有新人報到,二月這款叫做 utec T392。T392 主打雙卡 + 手寫,拍照聽歌也都有,最特別是螢幕上緣又多了 4 顆觸控按鍵,連同本來貼著螢幕底部的 4 顆,哇塞總共有 8 顆觸控捷鍵了,這樣一來無論是看訊息、玩遊戲、拍照或聽音樂,統統不必進入主目錄,點一下就行啦!



>>>更多內容
前期文章 全部歷史文章
出刊日期 出刊主題
2008-01-23 ASUS 四大新機特賣會 PChome ...
2008-01-16 N8600 LUNA 超完美仿冒機 你...
2008-01-09 Samsung D880 雙待王牌 外掛 ...
2008-01-07 Nokia 6500 Slide 買前指南:...
主編推薦  
搶救睡眠大作戰
謝長廷不是普通的利害!
Google PC企圖挑戰微軟?
製造浪漫,為愛增溫
我要訂閱這份報紙 我要取消這份報紙 訂報說明
.本電子報內容由 PhoneDaily 手机報 提供
PChome ePaper 電子報版權所有,關於電子報發送有任何疑問,請聯絡 客服
台北市敦化南路二段105號11樓 ,TEL:(02)2708-8038,FAX:(02)27094848。
廣告刊登授權服務隱私權聲明消費者保護兒童網路安全關於PChome徵人
網路家庭版權所有、轉載必究 Copyrightc PChome Online

Spatiotemporal Aggregate Computation: A Survey

Spatiotemporal Aggregate Computation: A Survey

 2005

1 INTRODUCTION

2 PRELIMINARIES

2.1 Aggregate Functions

2.2 Aggregation on Explicit Attributes

2.3 Aggregation on the Temporal and Spatial Extent

3 AGGREGATE FUNCTIONS ON EXPLICIT ATTRIBUTES

3.1 Formal Definition of Aggregation on Explicit Attributes

3.2 Existing Approaches for Evaluating Aggregate Queries

3.3 Aggregation and OLAP

4 TEMPORAL AGGREGATES

4.1 Formal Definition of Temporal Aggregation

4.2 Existing Approaches for Evaluating Temporal Aggregate Queries

4.2.1 Nonindexed Aggregation Evaluation

4.2.2 Indexed Aggregation Evaluation

4.3 Aggregates on Data Streams

5 SPATIAL AGGREGATION

5.1 Formal Definition of Spatial Aggregation

5.2 Existing Approaches for Evaluating Spatial Aggregate Queries

6 SPATIOTEMPORAL AGGREGATION

6.1 Formal Definition of Spatiotemporal Aggregation

6.2 Existing Approaches for Evaluating Spatiotemporal Aggregate Queries

7 RESEARCH OPPORTUNITIES

 

 [1] D.J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S.
Lee, M. Stonebraker, N. Tatbul, and S. Zdonik, "Aurora: A New
Model and Architecture for Data Stream Management," VLDB J.,
vol. 12, no. 2, pp. 120-139, Aug. 2003.
[2] T. Abraham and J.F. Roddick, "Survey of Spatio-Temporal
Databases," GeoInformatica, vol. 3, no. 1, pp. 61-99, 1999.
[3] S. Agarwal, R. Agrawal, P.M. Deshpande, A. Gupta, J.F.
Naughton, R. Ramakrishnan, and S. Sarawagi, "On the Computation
of Multidimensional Aggregates," Proc. VLDB Conf., pp. 506-
521, Sept. 1996.
[4] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom,
"Models and Issues in Data Stream Systems ," Proc. ACM
SIGACT-SIGMOD-SIGART Symp. Principles of Database Systems,
pp. 1-16, June 2002.
[5] J.L. Bentley, "Multidimensional Divide-and-Conquer," Comm.
ACM, vol. 23, no. 4, pp. 214-229, 1980.
[6] E. Bertino, B.C. Ooi, R. Sacks Davis, K.-L. Tan, J. Zobel, B.
Shidlovsky, and B. Catina, Indexing Techniques for Advanced
Database Systems. Boston: Kluwer Academic, 1997.
[7] C. Bettini, C.E. Dyreson, W.S. Evans, R.T. Snodgrass, and X.S.
Wang, "A Glossary of Time Granularity Concepts," Temporal
Databases: Research and Practice, pp. 406-413, Springer, 1998.
[8] C. Bettini, S. Jajodia, and S.X. Wang, Time Granularities in
Databases, Data Mining, and Temporal Reasoning. Berlin: Springer,
2000.
[9] L. Cabibbo and R. Torlone, "A Framework for the Investigation of
Aggregate Functions in Database Queries," Proc. Int'l Conf.
Database Theory (ICDT), pp. 383-397, Jan. 1999.
[10] S. Chaudhuri, G. Das, M. Datar, R. Motwani, and V. Narasayva,
"Overcoming Limitations of Sampling for Aggregation Queries,"
Proc. Int'l Conf. Data Eng., pp. 534-542, Apr. 2001.
[11] S. Chaudhuri, G. Das, and V. Narasayva, "A Robust, Optimization-
Based Approach for Approximate Answering of Aggregate
Queries," Proc. ACM-SIGMOD Conf., pp. 295-306, May 2001.
[12] C.X. Chen and C. Zaniolo, "SQLST : A Spatio-Temporal Data
Model and Query Language," Proc. Int'l Conf. Conceptual Modeling
(ER), pp. 96-111, Oct. 2000.
[13] Y.-J. Choi and C.-W. Chung, "Selectivity Estimation in Spatio-
Temporal Queries to Moving Objects," Proc. ACM-SIGMOD Conf.,
pp. 440-451, June 2002.
[14] S.-J. Chun, C.-W. Chung, J.-H. Lee, and S.-L. Lee, "Dynamic
Update Cube for Range-Sum Queries," Proc. VLDB Conf., pp. 521-
530, Sept. 2001.
[15] J. Considine, F. Li, G. Kollios, and J. Byers, "Approximate
Aggregation Techniques for Sensor Databases," Proc. Int'l Conf.
Data Eng., pp. 449-460, 2004.
[16] M. Datar, A. Gionis, P. Indyk, and R. Motwani, "Maintaining
Stream Statistics over Sliding Windows (Extended Abstract),"
Proc. Ann. ACM-SIAM Symp. Discrete Algorithms, pp. 635-644, Jan.
2002.
[17] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi, "Processing
Complex Aggregate Queries over Data Streams," Proc. ACMSIGMOD
Conf., pp. 61-72, June 2002.
[18] C.E. Dyreson, W.S. Evans, H. Lin, and R.T. Snodgrass, "Efficiently
Supporting Temporal Granularities," IEEE Trans. Knowledge and
Data Eng., vol. 12, no. 4, pp. 565-587, July/Aug. 2000.
[19] C.E. Dyreson, F. Grandi, W. Kafer, N. Kline, N. Lorentzos, Y.
Mitsopoulos, A. Montanari, D. Nonen, E. Peressi, B. Pernici, J.F.
Roddick, N.L. Sarda, M.R. Scalas, A. Segev, R.T. Snodgrass, M.D.
Soo, A. Tansel, P. Tiberio, G. Wiederhold, and C.S. Jensen, "A
Consensus Glossary of Temporal Database Concepts," SIGMOD
Record, vol. 23, no. 1, pp. 52-64, Mar. 1994
[20] R. Epstein, "Techniques for Processing of Aggregates in Relational
Database Systems," Technical Report UCB/ERL M7918, Univ. of
California, Berkeley, Feb. 1979.
[21] M. Erwing, R.H. Guting, M. Schneider, and M. Vazirgiannis,
"Spatio-Temporal Data Types: An Approach to Modeling and
Querying Moving Objects in Databases," GeoInformatica, vol. 3,
no. 3, pp. 269-296, 1999.

[22] L. Forlizzi, R.H. Guting, E. Nardelli, and M. Schneider, "A Data
Model and Data Structures for Moving Object Databases," Proc.
ACM-SIGMOD Conf., pp. 319-330, May 2000.
[23] J.C. Freytag and N. Goodman, "Translating Aggregate Queries
into Iterative Programs," Proc. VLDB Conf., pp. 138-146, Aug. 1986.
[24] V. Gaede and O. Gunther, "Multidimensional Access Methods,"
ACM Computing Surveys, vol. 30, no. 2, pp. 170-231, 1998.
[25] J.A.G. Gendrano, B.C. Huang, J.M. Rodrigue, B. Moon, and R.T.
Snodgrass, "Parallel Algorithms for Computing Temporal Aggregates,"
Proc. Int'l Conf. Data Eng., pp. 418-427, Mar. 1999.
[26] A.C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M.J. Strauss,
"Optimal and Approximate Computation of Summary Statistics
for Range Aggregates," Proc. ACM SIGACT-SIGMOD-SIGART
Symp. Principles of Database Systems, pp. 227-236, May 2001.
[27] A.C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M.J. Strauss,
"Surfing Wavelets on Streams: One-Pass Summaries for Approximate
Aggregate Queries," Proc. VLDB Conf., pp. 79-88, Sept. 2001.
[28] J. Gray, The Benchmark Handbook for Database and Transaction
Processing Systems. Morgan Kaufmann, 1991.
[29] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M.
Venkatrao, F. Pellow, and H. Pirahesh, "Data Cube: A Relational
Aggregation Operator Generalizing Group-by, Cross-Tab, and
Sub-Totals," Data Mining and Knowledge Discovery, vol. 1, no. 1,
pp. 29-53, 1997.
[30] S. Guha, N. Koudas, and K. Shim, "Data-Streams and Histograms,"
Proc. Ann. ACM Symp. Theory of Computing, pp. 471-475,
July 2001.
[31] P.J. Haas and J.M. Hellerstein, "Ripple Joins for Online Aggregation,"
Proc. ACM-SIGMOD Conf., pp. 287-298, June 1999.
[32] M. Hadjieleftheriou, G. Kollios, and V.J. Tsotras, "Efficient
Indexing of Spatiotemporal Objects," Proc. Conf. Extending
Database Technology, pp. 251-268, Mar. 2002.
[33] J.M. Hellerstein, P.J. Haas, and H.J. Wang, "Online Aggregation,"
Proc. ACM-SIGMOD Conf., pp. 171-182, May 1997.
[34] C.-T. Ho, R. Agrawal, N. Megiddo, and R. Srikant, "Range Queries
in OLAP Data Cubes," Proc. ACM-SIGMOD Conf., pp. 73-88, May
1997.
[35] M. Hogeweg, "Spatio-Temporal Visualization and the Need for
Integration," GeoInformatics, pp. 32-35, June 2001.
[36] C.S. Jensen and R.T. Snodgrass, "Semantics of Time-Varying
Information," Information Systems, vol. 21, no. 4, pp. 311-352, June
1996.
[37] C.O. Justice, D.K. Hall, and V.V. Salomonson, "The Moderate
Resolution Imaging Spectroradiometer (MODIS): Land Remote
Sensing for Global Change Research," IEEE Trans. Geoscience and
Remote Sensing, vol. 36, pp. 1228-1249, 1998.
[38] V. Khatri, S. Ram, R.T. Snodgrass, and G.M O'Brien, "Supporting
User-Defined Granularities and Indeterminacy in a Spatiotemporal
Conceptual Model," Annals Math. and Artificial Intelligence,
vol. 36, nos. 1-2, pp. 195-232, 2002.
[39] J.S. Kim, S.T. Kang, and M.-H. Kim, "On Temporal Aggregate
Processing Based on Time Points," Information Processing Letters,
vol. 71, nos. 5-6, pp. 213-220, Sept. 1999.
[40] N. Kline and R.T. Snodgrass, "Computing Temporal Aggregates,"
Proc. Int'l Conf. Data Eng., pp. 222-231, Mar. 1995.
[41] R.N. Kline, "Aggregation in Temporal Databases," PhD thesis,
Univ. of Arizona, May 1999.
[42] A. Klug, "Equivalence of Relational Algebra and Relational
Calculus Query Languages Having Aggregate Functions,"
J. ACM, vol. 29, no. 3, pp. 699-717, July 1982.
[43] Landsat, "Landsat Project Website," http://landsat7.usgs.gov/
index.php, Oct. 2003.
[44] P.-A. Larson, "Data Reduction by Partial Preaggregation," Proc.
Int'l Conf. Data Eng., pp. 706-715, 2002.
[45] I. Lazaridis and S. Mehrotra, "Progressive Approximate Aggregate
Queries with a Multi-Resolution Tree Structure," Proc. ACMSIGMOD
Conf., pp. 401-412, May 2001.
[46] J.A. Cotelo Lema and R.H. Guting, "Dual Grid: A New Approach
for Robust Spatial Algebra Implementation," GeoInformatica, vol. 6,
no. 1, pp. 57-76, 2002.
[47] N. Mamoulis and D. Papadias, "Selectivity Estimation of Complex
Spatial Queries," Proc. Int'l Symp. Advances in Spatial and Temporal
Databases, pp. 155-174, July 2001.
[48] U. Manber, Introduction to Algorithms: A Creative Approach. Reading,
Mass.: Addison-Wesley, 1989.
[49] Y. Manolopoulos, Y. Theodoridis, and V.J. Tsotras, Advanced
Database Indexing. Boston: Kluwer Academic, 2000.

[50] J. Melton, Advanced SQL:1999. Understanding Object-Relational and
Other Advanced Features. San Francisco: The Morgan Kaufman
Series in Data Management Systems, Morgan Kaufmann, 2003.
[51] MODIS, MODIS Web, http://modis.gsfc.nasa.gov/, Oct. 2003.
[52] B. Moon, I.F. Vega Lopez, and V. Immanuel, "Scalable Algorithms
for Large Temporal Aggregation," Proc. Int'l Conf. Data Eng.,
pp. 145-156, Mar. 2000.
[53] B. Moon, I.F. Vega Lopez, and V. Immanuel, "Efficient Algorithms
for Large-Scale Temporal Aggregation," IEEE Trans. Knowledge
and Data Eng., vol. 15, no. 3, pp. 744-751, May/June 2003.
[54] P. Ning, X.S. Wang, and S. Jajodia, "An Algebraic Representation
of Calendars," Annals Math. and Artificial Intelligence, vol. 36, nos. 1-
2, pp. 5-38, 2002.
[55] T. Palpanas, R. Sidle, R. Cochrane, and H. Pirahesh, "Incremental
Maintenance for Non-Distributive Aggregate Functions," Proc.
VLDB Conf., pp. 802-813, Aug. 2002.
[56] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao, "Efficient OLAP
Operations in Spatial Data Warehouses," Proc. Int'l Symp.
Advances in Spatial and Temporal Databases, pp. 443-459, July 2001.
[57] D. Papadias, Y. Tao, P. Kalnis, and J. Zhang, "Indexing Spatio-
Temporal Data Warehouses," Proc. Int'l Conf. Data Eng., pp. 166-
175, 2002.
[58] C. Parent, S. Spaccapietra, and E. Zimanyi, "Spatio-Temporal
Conceptual Models: Data Structures + Space + Time," Proc. ACM
Int'l Symp. Advances in Geographic Information Systems (ACM-GIS),
pp. 26-33, Nov. 1999.
[59] T.B. Pedersen and N. Tryfona, "Pre-Aggregation in Spatial Data
Warehouses," Proc. Int'l Symp. Advances in Spatial and Temporal
Databases, pp. 460-480, July 2001.
[60] D. Pfoser and N. Tryfona, "Requirements, Definitions and
Notations for Spatiotemporal Application Environments," Proc.
ACM Int'l Symp. Advances in Geographic Information Systems (ACMGIS),
pp. 124-130, Nov. 1998.
[61] K. Porkaew, I. Lazaridis, and S. Mehrotra, "Querying Mobile
Objects in Spatio-Temporal Databases," Proc. Int'l Symp. Advances
in Spatial and Temporal Databases, pp. 59-78, July 2001.
[62] L. Qiao, D. Agrawal, and A. El Abbadi, "RHist: Adaptive
Summarization over Continuous Data Streams," Proc. ACM Int'l
Conf. Information and Knowledge Management (ACM-CIKM), pp. 469-
476, Nov. 2002.
[63] J.F. Roddick, K. Hornsby, and M. Spiliopoulou, "YABTSSTDMR—
Yet Another Bibliography of Temporal, Spatial, and Spatio-
Temporal Data Mining Research," Proc. SIGKDD Temporal Data
Mining Workshop, pp. 167-175, 2001.
[64] V.V. Salomonson, W.L. Barnes, P.W. Maymon, H.E. Montgomery,
and H. Ostrow, "MODIS: Advanced Facility Instrument for
Studies of the Earth as a System," IEEE Trans. Geoscience and
Remote Sensing, vol. 27, pp. 145-153, 1989.
[65] S. Saltenis and C.S. Jensen, "Indexing of Moving Objects for
Location- Based Services," Proc. Int'l Conf. Data Eng., pp. 463-472,
2002.
[66] B. Salzberg, "Access Methods," ACM Computing Surveys, vol. 28,
no. 1, pp. 117-120, 1996.
[67] T. Sellis, "Research Issues in Spatio-Temporal Database Systems,"
Proc. Int'l Symp. Advances in Spatial Databases, pp. 3-11, July 1999.
[68] R.T. Snodgrass, Developing Time-Oriented Database Applications in
SQL. San Francisco: Morgan Kaufmann, 2000.
[69] R.T. Snodgrass and I. Ahn, "A Taxonomy of Time in Databases,"
Proc. ACM-SIGMOD Conf., pp. 236-246, May 1985.
[70] R.T. Snodgrass, S. Gomez, and L.E. McKenzie Jr., "Aggregates in
the Temporal Query Language TQuel," IEEE Trans. Knowledge and
Data Eng., vol. 5, no. 5, pp. 826-842, Sept./Oct. 1993.
[71] J. Sun, D. Papadias, Y. Tao, and B. Liu, "Querying about the Past,
the Present, and the Future in Spatio-Temporal Databases," Proc.
Int'l Conf. Data Eng., pp. 202-213, 2004.
[72] Y. Tao, G. Kollios, J. Considine, F. Li, and D. Papadias, "Spatio-
Temporal Aggregation Using Sketches," Proc. Int'l Conf. Data Eng.,
pp. 214-226, 2004.
[73] Y. Tao and D. Papadias, "The MV3R-Tree: A Spatio-Temporal
Access Method for Timestamp and Interval Queries," Proc. VLDB
Conf., pp. 431-440, Sept. 2001.
[74] Y. Tao, D. Papadias, and C. Faloutsos, "Approximate Temporal
Aggregation," Proc. Int'l Conf. Data Eng., pp. 190-201, 2004.
[75] Y. Tao, D. Papadias, and J. Zhang, "Aggregate Processing of
Planar Points," Proc. Conf. Extending Database Technology, pp. 682-
700, Mar. 2002.

[76] Y. Theodoridis, T. Sellis, A.N. Papadopoulos, and Y. Manolopoulos,
"Specifications for Efficient Indexing in Spatiotemporal
Databases," Technical Report CH-98-01, The Chorochronos
research network project, Athens, Greece, Feb. 1998.
[77] Y. Theodoridis, J.R.O. Silva, and M.A. Nascimento, "On the
Generation of Spatiotemporal Datasets," Proc. Int'l Symp. Large
Spatial Databases, pp. 147-164, July 1999.
[78] N. Tryfona and C.S. Jensen, "Conceptual Data Modeling for
Spatiotemporal Applications," GeoInformatica, vol. 3, no. 3, pp. 245-
268, 1999.
[79] P.A. Tuma, "Implementing Historical Aggregates in TempIS,"
master's thesis, Wayne State Univ., Detroit, Mich., Nov. 1992,
[80] J.W. van Roessel, "Design of a Spatial Data Structure Using the
Relational Normal Form," Int'l J. Geographical Information Systems,
vol. 1, no. 1, pp. 33-50, 1987.
[81] M. Wang, J.S. Vitter, L. Lim, and S. Padmanabhan, "Wavelet-
Based Cost Estimation for Spatial Queries," Proc. Int'l Symp.
Advances in Spatial and Temporal Databases, pp. 175-193, July 2001.
[82] M.F. Worboys, "A Unified Model for Spatial and Temporal
Information," The Computer J., vol. 37, no. 1, pp. 26-34, 1994.
[83] W.P. Yan and P.-A. Larson, "Eager Aggregation and Lazy
Aggregation," Proc. VLDB Conf., pp. 345-357, Sept. 1995.
[84] J. Yang and J. Widom, "Incremental Computation and Maintenance
of Temporal Aggregates," Proc. Int'l Conf. Data Eng.,
pp. 51-60, Apr. 2001.
[85] X. Ye and J.A. Keane, "Processing Temporal Aggregates in
Parallel," Proc. IEEE Int'l Conf. Systems, Man, and Cybernetics,
pp. 1373-1378, Oct. 1997.
[86] C. Zaniolo, S. Ceri, C. Faloutsos, R.T. Snodgrass, V.S. Subrahmanian,
and R. Zicari, Advanced Database Systems. San Francisco:
Morgan Kaufmann, 1997.
[87] D. Zhang, "Aggregation Computation over Complex Objects,"
PhD thesis, Univ. of California, Riverside, Aug. 2002.
[88] D. Zhang, D. Gunopulos, V.J. Tsotras, and B. Seeger, "Temporal
Aggregation over Data Streams Using Multiple Granularities,"
Proc. Conf. Extending Database Technology, pp. 646-663, Mar. 2002.
[89] D. Zhang, A. Markowetz, V.J. Tsotras, D. Gunopulos, and B.
Seeger, "Efficient Computation of Temporal Aggregates with
Range Predicates," Proc. ACM SIGACT-SIGMOD-SIGART Symp.
Principles of Database Systems, pp. 237-245, May 2001.
[90] D. Zhang and V.J. Tsotras, "Improving Min/Max Aggregation
over Spatial Objects," Proc. ACM Int'l Symp. Advances in Geographic
Information Systems (ACM-GIS), pp. 88-93, Nov. 2001.
[91] D. Zhang, V.J. Tsotras, and D. Gunopulos, "Efficient Aggregation
over Objects with Extent," Proc. ACM SIGACT-SIGMOD-SIGART
Symp. Principles of Database Systems, pp. 121-132, June 2002.

 

 



--
[垃圾桶] 裡沒有會話群組。 當您有超過 6323.752806 MB (還在增加中) 的免費儲存空間時,誰還需要刪除郵件?!

64位元Vista筆電上半年將陸續上市

 
每日出刊.2008.01.30
 
本 期 目 錄 簡介/舊報明細
64位元Vista筆電上半年將陸續上市
台大/交大參與Google海外第一波雲端運算學術計畫
次世代記憶體DDR3今年可望走入筆電市場
SSD首度進入企業儲存系統
甲骨文計畫推出PLM垂直產業方案
合法免費數位音樂風吹起?
研究:eBay去年替買家節省190億美元
Cisco新交換器翻新資料中心整合模式
日本為新幹線規畫網路專用頻道

▼ ADVERTISEMENT ▼
伺服器比價快報--新春特惠方案大全
你個人就是最獨特的品牌!申請自己的專屬網址!
ADSL免費試用30天免綁約,以及第一個月連線費不要錢

今日新聞 

64位元Vista筆電上半年將陸續上市

內載微軟64位元版本Vista作業系統的筆記型電腦將在上半年陸續推出,其中華碩已率先拔得頭籌推出遊戲筆電G2。

華碩推出的G2內建英特爾Core 2 Duo T9300處理器,採用最新45奈米製程設計,可支援64位元運算架構,配合預載的微軟64位元Vista作業系統,定位於遊戲玩家市場。G2使用17吋寬螢幕,內建HD DVD光碟機、4GB記憶體、NVIDIA 8700GT及320GB大容量硬碟,售價為96800元。

全文>>
 
 
台大/交大參與Google海外第一波雲端運算學術計畫

Google今天(1/29)宣佈,將在台灣大學及交通大學兩所學校推廣其雲端運算學術計畫(Academic Cloud Computing Initiative)。讓台灣成為Google在美國境外推廣此計畫的首站之一。

Google是在去年(2007)10月和IBM共同宣佈釋出資源,向大專院校推廣雲端運算技術。在美國加入該計畫的包括華盛頓大學、卡內基美隆大學、麻省理工學院、史丹佛大學、加州大學柏克萊分校及馬里蘭大學等。美國境除了台灣之外還有以色列及中國大陸的清華大學。

全文>>
 
 
次世代記憶體DDR3今年可望走入筆電市場

強調省電、高傳輸速率的次世代記憶體模組DDR3,今年在英特爾帶動下將開始進入筆電市場。

去年中英特爾發表3系列桌上型晶片組,首度開始支援DDR3記憶體後,已吸引宇瞻(Apacer)、奇夢達(Qimonda)、金士頓(Kingston)等記憶體模組業者相繼於去年下半年推出DDR3桌上型電腦用模組。今年順應英特爾上半年即將發表筆電新平台Montevina,代號為Cantiga的新晶片組也對DDR3記憶體提供支援下,DDR3在筆電市場的應用也將蓄勢待發。

全文>>
 
 
SSD首度進入企業儲存系統

EMC日前推出升級版高階儲存系統EMC Symmetrix DMX-4,可支援固態硬碟(SSD),為目前市場上唯一可以採用固態硬碟的儲存系統,讓固態硬碟繼進入筆記型電腦、刀鋒伺服器後,也走進企業儲存系統。

除了使用光纖硬碟、SATA硬碟外,升級版的Symmetrix DMX-4還可選擇採用73GB或146GB容量的固態硬碟(Solid State Disk,SSD),EMC表示,若用固態硬碟取代光纖硬碟,約可節省38%的電腦,存取速度較15,000rpm轉速的傳統硬碟最快可達10倍。EMC資深產品行銷經理李百飛表示,支援固態硬碟的Symmetrix DMX-4預計3月底前可在臺灣出貨。

全文>>
 
 
甲骨文計畫推出PLM垂直產業方案

產品生命周期管理解決方案廠商Agile在去年底正式併入甲骨文之後,日前首度在臺灣舉辦小型的用戶大會,並期望藉此廣納客戶意見,進而作為下一個版本的研發方向。甲骨文在市場差異化的考量下,計畫針對垂直產業推出PLM方案。

甲骨文臺灣區總經理吳昇奇指出,Agile在臺灣市場的表現,雖然是以高科技產業的需求最大,但實際上,包括消費性產品以及工業製造等產品屬性具有少量多樣,以及產品生命周期短的產業,對於PLM產品的需求已經日益強勁,對此,甲骨文不排除針對垂直產業推出PLM解決方案的可能。

全文>>
今日外電 

合法免費數位音樂風吹起?

繼唱片業者妥協釋出無防拷機制的MP3音樂供使用者付費下載之後,近日相繼有音樂網站宣稱取得四大唱片業者的授權,提供免費的數位音樂服務。

原本提供線上隨選廣播服務的Last.fm在上周三(1/23)率先宣布,在EMI、Sony BMG、環球及華納唱片等四大唱片業者及其他獨立唱片業者的支持下,將提供免費且完整的合法音樂供使用者聆聽。

全文>>
 
 
研究:eBay去年替買家節省190億美元

馬里蘭大學史密斯商學院(Robert H. Smith School of Business at the University of Maryland)的兩名副教授近日發表一份研究報告估計,eBay去年替全球買家總計節省了190億美元。

該報告是奠基在經濟學上的消費者剩餘(consumer surplus)理論上,消費者剩餘指的是消費者購買某種商品時所願意支付的價格與實際支付價格之間的差異,將前者減去後者的金額即形成所謂的消費者剩餘。

全文>>
 
 
Cisco新交換器翻新資料中心整合模式

Cisco週一(1/28)推出資料中心使用的交換器平台Nexus 7000,可整合伺服器的網路交換器,以及儲存系統的光纖通道裝置,為資料中心的平台整合提供新模式。

Nexus 7000計劃於今年第二季上市,售價是75000美元起。一般推估,導入整體平台的軟硬體投資約在數十萬美元左右。

網路架構雖然在資料中心扮演重要角色,但在資料中心的平台整合上,包括IT整合、虛擬管理等技術,一直是IBM、Sun等伺服器廠商較為積極。Cisco經過三年研發、投入上億美元所推出的整合平台,展現從網路架構角度,提供資料中心整合建置、虛擬化管理方案的企圖心。

全文>>
 
 
日本為新幹線規畫網路專用頻道

在日本總務省週五(1/25)公佈的電波監理審議修正草案中,已決定新幹線列車網路服務將推翻先前共用現有網路頻道的模式,改為開設專用頻道以便利乘客上網路。

日本總務省表示,為了讓國民在長時間高速移動、隧道數量繁雜的新幹線上使用穩定的網路連線品質,已擬定在新幹線鐵路下方鋪設洩波同軸電纜(Leaky Coaxial Cable,LCX),提供經過隧道也不斷訊的電話與網路服務,並且開設400MHz專用頻道以維持網路服務品質。

全文>>
前期文章 全部歷史文章
出刊日期 出刊主題
2008-01-29 HP今年加強發展三大軟體產品線
2008-01-28 縱橫iGoogle世界的發明王
2008-01-27 部落格精選-部落格經營來源的分...
2008-01-26 Google App教育版推一年半 學校...
我要訂閱這份報紙 我要取消這份報紙 訂報說明
.本電子報內容由 iThome online 提供
PChome ePaper 電子報版權所有,關於電子報發送有任何疑問,請聯絡 客服
台北市敦化南路二段105號11樓 ,TEL:(02)2708-8038,FAX:(02)27094848。
廣告刊登授權服務隱私權聲明消費者保護兒童網路安全關於PChome徵人
網路家庭版權所有、轉載必究 Copyrightc PChome Online